卫生研究

合成生物学的机遇与挑战

 

科学技术像一把双刃剑,既能通过促进经济和社会发展以造福于人类,同时也可能在一定条件下对人类的生存和发展带来消极后果。科学技术作用的实现要受一定客观条件,诸如社会制度、利益关系等因素的影响,也要受到一定的主观条件如人们的观念和认识水平的影响。

“商用和军用”双用途的合成生物学

合成生物学作为一种具有颠覆性意义的新兴技术,其未来应用前景正越来越多地在工业界和学术界讨论。与很多新兴技术一样,合成生物学也具有商用和军用两种用途。

在商业应用领域,合成生物学市场预计在2018年至2025年期间将以28.2%的复合年增长率增长,并在2025年达到560.449亿美元的市场规模。合成生物学市场可以根据产品、技术和应用三个方面进行细分。在产品方面,市场被分割成酶、寡核苷酸、底盘生物和异种核酸等领域。由于酶在医疗保健领域的广泛应用,酶产品占据了最大的市场份额。在技术基础上,市场被分割为基因合成、基因组工程、测量和建模、克隆和测序、纳米技术等。基因合成在这些技术中占有最大的市场份额,遗传学领域的研究和开发活动日益增多,并且越来越多的市场参与者提供基因合成产品和解决方案。在应用层面,全球合成生物学市场分为工业应用、食品应用、农业应用、医疗应用以及环境应用等。

在军事应用领域,合成生物学显示出颠覆性潜力:一是将极大促进包括军事医学在内的生物医学的发展,包括生产出更有效的疫苗、研制出新型军队特需药品等;二是用于设计和改造军用材料,如对微生物进行定向改造,使其具有特定功能,以满足军事需要。例如美国合成生物学企业Ginkgo Bioworks与美国国防部高级研究计划局(DARPA)合作生产益生菌,帮助美国士兵在海外抵御胃病。三是用于开发军用新能源,如部队可利用携带的少量合成生物体,将空气中的二氧化碳转化为生物能源,从而极大提高部队的机动性和作战范围。

美英两国高度重视的合成生物学

合成生物学在商业和军事领域的应用前景引起全球各国的高度关注和项目资助,以美英两国尤为突出。相应的,美英两国无论在合成生物学研究层面还是应用层面,都处于世界领先地位。以下是美英两国在合成生物学领域的项目资助和相关政策盘点。

美 国

2012年,美国埃克森美孚公司与文特尔合成基因组公司(SGI)签订合作协议,投入6亿美元进行微藻生物燃料的研发。同时,美国DARPA在这一年也发起了三项研究计划:计划4年共投入1.92亿美元的“现代疗法:自主预防和治疗项目”,致力于利用合成生物学方法为感染性疾病的识别与治疗提供帮助;计划2年投入约5000万美元的“生命铸造厂”项目,以实现军用高价值材料和设备可按需设计与生产;计划4年投入约4462万美元的“生物设计项目”,致力于生产全新的生物组织再生材料等。

2013年,美国国立卫生研究院(NIH)投入约250万美元,发起“作为下一代癌症治疗的人工修饰T细胞”项目。美国能源部投入约160万美元发起“合成基因回路促进转基因生物能源作物的产量”项目。

2014年,美国DARPA发起“生命铸造厂-千分子”计划,预计生产1000个自然界不存在、独特的分子和化学模块,该计划是对“生命铸造厂”项目的补充。此外,美国能源部在这一年发起了三项合成生物学的应用项目,包括:投入157万美元的“利用人工修饰大肠杆菌将甲烷转换为正丁醇”项目,投入 450万美元的“利用合成甲基营养型酵母生产液体燃料” 项目和投入300万美元的“厌氧生物转化甲烷成甲醇” 项目等。

2016年,美国自然科学基因发起“非酶RNA复制”项目,投入100万美元以研究自然界原始的RNA复制;同年,美国Craig Venter及其团队成功构建“丝状支原体”,完成世界最小细菌基因组的构建;美国Ginkgo Bio Works公司筹集1亿美元,使用机器人生产线创造微生物,以生产用于香料、杀虫剂和饮料等的化学品。此外,美国国家科学院在这一年启动“合成生物学带来的新威胁识别与应对策略研究”项目,重点对致病微生物的生物学功能、致病机理的改造与操控等进行研究,最终目标是为国防部提供关于合成生物学的安全威胁评估与应对措施建议。

上一篇:村级卫生监督工作总结
下一篇:没有了